《Journal Of Machine Learning Research》雜志的收稿范圍和要求是什么?
來源:優(yōu)發(fā)表網(wǎng)整理 2024-09-18 11:00:39 1021人看過
《Journal Of Machine Learning Research》雜志收稿范圍涵蓋計(jì)算機(jī)科學(xué)全領(lǐng)域,此刊是該細(xì)分領(lǐng)域中屬于非常不錯(cuò)的SCI期刊,在行業(yè)細(xì)分領(lǐng)域中學(xué)術(shù)影響力較大,專業(yè)度認(rèn)可很高,所以對(duì)原創(chuàng)文章要求創(chuàng)新性較高,如果您的文章質(zhì)量很高,可以嘗試。
平均審稿速度 約2月 ,影響因子指數(shù)4.3。
該期刊近期沒有被列入國(guó)際期刊預(yù)警名單,廣大學(xué)者值得一試。
具體收稿要求需聯(lián)系雜志社或者咨詢本站客服,在線客服團(tuán)隊(duì)會(huì)及時(shí)為您答疑解惑,提供針對(duì)性的建議和解決方案。
出版商聯(lián)系方式:MICROTOME PUBL, 31 GIBBS ST, BROOKLINE, USA, MA, 02446
其他數(shù)據(jù)
| 是否OA開放訪問: | h-index: | 年文章數(shù): |
| 開放 | 173 | 349 |
| Gold OA文章占比: | 2021-2022最新影響因子(數(shù)據(jù)來源于搜索引擎): | 開源占比(OA被引用占比): |
| 0.00% | 4.3 | 0 |
| 研究類文章占比:文章 ÷(文章 + 綜述) | 期刊收錄: | 中科院《國(guó)際期刊預(yù)警名單(試行)》名單: |
| 100.00% | SCIE | 否 |
歷年IF值(影響因子):
歷年引文指標(biāo)和發(fā)文量:
歷年中科院JCR大類分區(qū)數(shù)據(jù):
歷年自引數(shù)據(jù):
發(fā)文統(tǒng)計(jì)
2023-2024國(guó)家/地區(qū)發(fā)文量統(tǒng)計(jì):
| 國(guó)家/地區(qū) | 數(shù)量 |
| USA | 366 |
| CHINA MAINLAND | 75 |
| France | 66 |
| England | 61 |
| GERMANY (FED REP GER) | 50 |
| Canada | 34 |
| Switzerland | 32 |
| Israel | 23 |
| Netherlands | 15 |
| Singapore | 14 |
2023-2024機(jī)構(gòu)發(fā)文量統(tǒng)計(jì):
| 機(jī)構(gòu) | 數(shù)量 |
| UNIVERSITY OF CALIFORNIA SYSTEM | 61 |
| CENTRE NATIONAL DE LA RECHERCHE ... | 30 |
| CARNEGIE MELLON UNIVERSITY | 27 |
| STANFORD UNIVERSITY | 21 |
| UNIVERSITY OF CHICAGO | 21 |
| MASSACHUSETTS INSTITUTE OF TECHN... | 20 |
| ETH ZURICH | 19 |
| GOOGLE INCORPORATED | 19 |
| UNIVERSITY OF MICHIGAN SYSTEM | 19 |
| UNIVERSITY OF OXFORD | 19 |
近年引用統(tǒng)計(jì):
| 期刊名稱 | 數(shù)量 |
| J MACH LEARN RES | 430 |
| ANN STAT | 264 |
| IEEE T INFORM THEORY | 161 |
| J R STAT SOC B | 138 |
| J AM STAT ASSOC | 136 |
| MACH LEARN | 90 |
| BIOMETRIKA | 74 |
| NEURAL COMPUT | 63 |
| MATH PROGRAM | 62 |
| SIAM J OPTIMIZ | 62 |
近年被引用統(tǒng)計(jì):
| 期刊名稱 | 數(shù)量 |
| IEEE ACCESS | 1488 |
| NEUROCOMPUTING | 494 |
| J MACH LEARN RES | 430 |
| SENSORS-BASEL | 266 |
| SCI REP-UK | 263 |
| PATTERN RECOGN | 253 |
| EXPERT SYST APPL | 229 |
| IEEE T NEUR NET LEAR | 226 |
| APPL SCI-BASEL | 218 |
| KNOWL-BASED SYST | 208 |
近年文章引用統(tǒng)計(jì):
| 文章名稱 | 數(shù)量 |
| Deep Hidden Physics Models: Deep... | 49 |
| Neural Architecture Search: A Su... | 43 |
| Automatic Differentiation in Mac... | 29 |
| To Tune or Not to Tune the Numbe... | 26 |
| Pyro: Deep Universal Probabilist... | 26 |
| All Models are Wrong, but Many a... | 25 |
| Emergence of Invariance and Dise... | 22 |
| PyOD: A Python Toolbox for Scala... | 22 |
| Quantized Neural Networks: Train... | 20 |
| Hyperband: A Novel Bandit-Based ... | 20 |
聲明:以上內(nèi)容來源于互聯(lián)網(wǎng)公開資料,如有不準(zhǔn)確之處,請(qǐng)聯(lián)系我們進(jìn)行修改。